Total Synthesis of (-)-Cleistenolide

by Dokuburra Chanti Babu^a), Kankati Ashalatha^a), Chitturi Bhujanga Rao^a), Jon Paul Selvam Jondoss^a), and Yenamandra Venkateswarlu*^a)

a) Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500007, India (phone: +91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

An efficient and short total synthesis of (–)-cleistenolide (1) from D-mannitol with an overall yield of 23.6% is described. The chiron approach for the synthesis of (–)-cleistenolide involves a one-C-atom *Wittig* olefination, a selective allylic triethylsilyl protection, and a *Grubbs*-catalyzed ring-closure-metathesis (RCM) reaction as the key steps.

Introduction. – Antibacterial agents are gaining importance in drug therapy [1]. The introduction of antibiotics helps to drop the deaths rate from infectious diseases. For the treatment of infections caused by resistant bacteria, the antibacterial drugs such as teicoplanin, quinupristin/dalfopristin, and linezolid, *etc.*, are exhibiting side effects, and also their proficiency has been restricted by the development of bacterial-resistant mutants [2]. In view of tuning impediments, there is a necessity to identify and develop new antibacterial drugs. The biological activity of components usually depends on their functionality, configuration, and optical purity. Mainly in the antibacterial-drug discovery, the lactone functionality is an important feature for antibacterial agents [3]. Hence, there is a need for worthy efforts and skills towards the synthesis of lactones in enantiomerically pure form [4].

(-)-Cleistenolide (1) and (-)-cleistodienol (2) are natural products isolated from the medicinal plant *Cleistochlamys kirkii* found in Tanzania and Mozambique [5]. (-)-Cleistenolide is a six-membered lactone with a 5,6-dihydro-2*H*-pyran-2-one structure, which showed *in vitro* antibacterial activity against *Staphylococcus aureus* and *Bacillus anthracis* and antifungal activity against *Candida albicans*. The extracts of this plant are used in traditional medicine as a remedy for treatment of wound infections, rheumatism, and tuberculosis [6]. In the recent past, a few syntheses of (-)-cleistenolide have been reported [7].

In continuation of our interest in the synthesis of biologically active natural products [8], we were interested in the synthesis of compound 1, which contains an α,β -

unsaturated δ -lactone moiety with a configurationally defined tetrol system. We started our synthesis from D-mannitol to furnish the natural product (–)-cleistenolide (1).

Results and Discussions. – The retrosynthetic analysis of compound 1 conceives that lactone 1 could be easily obtained from ester 11 by a ring-closing-metathesis (RCM) reaction via the mono-triethylsilyl-protected intermediate 8 (*Scheme 1*). The later can be easily derived from D-mannitol (3) *via* the procedure shown in *Scheme 2*.

Scheme 1. Retrosynthetic Analysis of (-)-Cleistenolide (1)

Scheme 2

a) $Me_2C(OMe)_2$, DMSO, TsOH (cat.), 6 h, r.t.; 79%. b) Et_3N , BzCl, CH_2Cl_2 , 50° , 6 h; 91%. c) 1) H_5IO_6 , Et_2O , r.t., 6 h, $NaHCO_3$. 2) 'BuOK, $Ph_3PCH_3^+Br^-$, $THF_1 = 10^\circ$, 4 h; 71%. d) K_2CO_3 , MeOH, r.t., 3 h; 91%. e) Et_3SiCl , 1H-imidazole, N_iN -dimethylpyridin-4-amine (DMAP), CH_2Cl_2/DMF 1:1, -78° , 1 h; 90%. f) Acryloyl chloride, Et_3N , CH_2Cl_2 , r.t., 4 h; 84%. g) Dowex-50 (H⁺), MeOH, r.t., 6 h; 94%. h) BzCl, pyridine, followed by Ac_2O , 0° to r.t., 7 h; 85%. i) Grubbs' second-generation catalyst (5 mol-%), CH_2Cl_2 , reflux, 5 h; 85%.

Thus, D-mannitol (3) was treated with 2,2-dimethoxypropane ($Me_2C(OMe)_2$) in DMSO in the presence of *p*-toluenesulfonic acid (TsOH) to afford the corresponding 1,2:5,6-di-*O*-isopropylidene-protected diol 4 as a white solid [9] (*Scheme 2*). The latter

was further treated with benzoyl chloride (BzCl) in the presence of Et_3N in CH_2Cl_2 to afford 1,2:5,6-di-O-isopropylidene-3,4-di-O-benzoyl-protected derivative **5** [10] in 91% yield. Compound **5** was treated with orthoperiodic acid (H_3IO_6) followed by NaHCO₃ in Et_2O at room temp. to yield the corresponding aldehyde [11] which was further converted into alkene **6** via a Wittig reaction. The two Bz protecting groups of **6** were removed by reaction with $K_2CO_3/MeOH$ to afford diol **7** in 91% yield. The sterically less hindered allylic OH group in **7** was selectively protected as triethylsilyl ether by reacting **7** with Et_3SiCl and Et_3H -imidazole in Et_3H to give the corresponding acrylate **9** in 84% yield. We tried to deprotect the isopropylidene and triethylsilyl ether group in a one-pot reaction with various reagents such as TsOH, camphorsulfonic acid (CSA), and other acids in MeOH, without success.

Finally, we achieved the deprotection of both groups by treatment with Dowex-50 (H⁺) resin in MeOH to afford the desired triol intermediate 10 in 94% yield. Compound 10 was treated with BzCl in pyridine followed by Ac_2O in a one-pot procedure to furnish diolefinic tetraester 11 in 85% yield. The latter was subjected to ring-closing metathesis (RCM) by using Grubbs' second-generation catalyst in CH_2Cl_2 to afford the natural product (–)-cleistenolide (1) in 85% yield as a colorless solid. The physical and spectroscopic data of the synthesized compound 1 were identical to those of the natural product [5].

Conclusion. – Among the reported five synthesis of (–)-cleistenolide (1), three used D-mannitol as starting material, and two other used D-arabinose and (–)-D-isoascorbic acid, respectively. In the present synthesis, we took advantage of all the stereogenic centers of D-mannitol. Thus the obtained diol **7** was selectively protected with Et_3SiCl , and the product was treated with acryloyl chloride to give acrylate **9**. In a one-pot procedure, the hydroxy derivative **10** was reacted sequentially with BzCl and Ac_2O to afford tetraester **11**, which on ring-closing-metathesis (RCM) reaction in the presence of *Grubbs*' second-generation catalyst afforded (–)-cleistenolide (1).

The authors are thankful to *UGC*, *CSIR*, New Delhi, India, for financial assistance, and Dr. *J. S. Yadav*, Director, Indian Institute of Chemical Technology (IICT), for his constant encouragement.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. The reagents were purchased from *Aldrich* and *Acros* and were used without further purification unless otherwise stated. All moisture-sensitive reactions were carried out under N_2 . Org. solns. were dried (Na_2SO_4) and concentrated *in vacuo* below 40° . Column chromatographic (CC): silica gel $(SiO_2, 60-120 \text{ mesh}; Acme's)$. Optical rotations: *HoribaSEPA-300* high-sensitive polarimeter; at 25°. IR Spectra: *Perkin-Elmer-IR-683* spectrophotometer with NaCl optics; $\tilde{\nu}$ in cm⁻¹. ¹H- (300 MHz) and ¹³C-NMR (75 MHz) Spectra: *Bruker-Avance-300* instrument; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: *Agilent Technologies 1100* series (Agilent Chemistation Software); in m/z.

1,2-Bis(2,2-dimethyl-1,3-dioxolan-4-yl)ethane-1,2-diyl Dibenzoate (=1,2:5,6-Bis-O-(1-methylethylidene)-D-mannitol Dibenzoate; **5**) [10]. To a stirred soln. of diol **4** [9] (5 g, 19.08 mmol) and Et₃N (7.96 ml, 57.24 mmol) in dry CH₂Cl₂ (30 ml) was added BzCl (4.87 ml, 41.96 mmol) at 0° under N₂. After completion of the reaction, the mixture was diluted with H₂O (20 ml) and extracted with CH₂Cl₂ (3 ×

15 ml), the org. phase washed with brine $(2 \times 10 \text{ ml})$, dried (Na_2SO_4) , and concentrated, and the crude residue purified by CC (AcOEt/hexane 1:9): **5** (8.1g, 91%). White solid. M.p. $82-85^{\circ}$. $[\alpha]_{25}^{25} = -113.9$ (c=3.4, CHCl₃). IR (KBr): 3433, 3062, 2991, 2896, 1727, 1600, 1453, 1378, 1206, 1112, 1067. 1 H-NMR (300 MHz, CDCl₃): 8.02 (t, J=6.7, 4 H); 7.53 (t, J=6.7, 2 H); 7.41 (t, J=7.5, 4 H);

1-(2,2-Dimethyl-1,3-dioxolan-4-yl)but-3-ene-1,2-diyl Dibenzoate (1,2-Dideoxy-5,6-O-(1-methylethylidene)-D-arabino-hex-1-enitol 3,4-Dibenzoate; 6). To a soln. of 5 (5 g, 10.6 mmol) in dry Et₂O (45 ml) was added H₅IO₆ (3.32 g, 14.56 mmol) at 0°, and the mixture was stirred for 6 h at r.t. The mixture was neutralized with NaHCO₃ (3.5 g), stirred for 30 min, and filtered through a Celite pad. The filtrate was evaporated to give the crude aldehyde, which was used as such for the next reaction without purification. To a cooled (-10°) soln. of Ph₃PCH₃Br (8.38 g, 21.2 mmol) in THF (30 ml) was added 'BuOK (2.26 g, 20.1 mmol) portionwise, and the mixture was stirred for 2 h at r.t. To this mixture, a soln. of aldehyde in dry THF (20 ml) was added slowly at -10 min and then stirred at -10° for 2 h. After completion of the reaction TLC monitoring, the mixture was quenched by addition of sat. NH₄Cl soln. (20 ml) and extracted with AcOEt (3×15 ml). The combined extract was washed with brine, dried (Na₂SO₄) and concentrated and the crude residue purified by CC (AcOEt/hexane 5:95): 5 (2.94 g, 71%). Colorless solid. $[a]_D^{25} = +35.3$ (c = 1.5, CHCl₃). IR (KBr): 2915, 2855, 1695, 1602, 1256, 1067, 710. ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$: 8.13 (d, J = 8.30, 4 H); 7.63 (t, J = 7.54, 2 H); 7.49 (t, J = 7.54, 4 H); 5.83 – 5.97 (m, J = 7.54, 4 H); 5.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.83 – 6.97 (m, J = 7.54, 4 H); 6.84 – 6.97 (m, J = 7.54, 4 H); 6.84 – 6.97 (m, J = 7.54, 4 H); 6.84 – 6.97 (m, J = 7.54, 4 H); 7.97 (m, J = 7.54, 42 H); 5.61 - 5.66 (m, 1 H); 5.23 - 5.45 (m, 2 H); 4.39 - 4.47 (m, 1 H); 4.03 - 4.09 (m, 2 H); 1.34 (s, 3 H); 1.32 (s, 3 H). ¹³C-NMR (125 MHz, CDCl₃): 165.64; 165.21; 138.17; 132.14 (2 C); 129.74 (2 C); 129.68 (4 C); 129.31 (4 C); 118.95; 109.61; 74.4; 73.49 (2 C); 65.74; 26.45; 25.21. ESI-MS: 419 $([M + \text{Na}]^+)$.

1-(2,2-Dimethyl-1,3-dioxolan-4-yl)but-3-ene-1,2-diol (=1,2-Dideoxy-5,6-O-(1-methylethylidene)-D-arabino-hex-1-enitol; **7**) [13]. To a cooled (0°) soln. of **6** (2.9 g, 7.43 mmol) in MeOH (20 ml) was added K₂CO₃ (2.46 g, 17.8 mmol), and the mixture was stirred for 3 h at r.t. After completion of the reaction (TLC monitoring), the mixture was filtered and the solvent evaporated. The residue was diluted with H₂O (10 ml), the mixture extracted with AcOEt (3 × 15 ml), the combined extract washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 3:7): **7** (1.27 g, 91%). Colorless oil. [α]_D²⁵ = +13.6 (c = 1.7, CHCl₃). IR (neat): 3419, 2986, 2926, 1643, 1376, 1065. ¹H-NMR (300 MHz, CDCl₃): 5.88−6.01 (m, 1 H); 5.33−5.42 (m, 1 H); 5.22−5.30 (m, 1 H); 4.21−4.27 (m, 1 H); 3.93−4.16 (m, 3 H); 3.59 (dd, J = 3.39, 6.23, 1 H); 2.84 (br. s, 2 H); 1.43 (s, 3 H); 1.36 (s, 3 H). ¹³C-NMR (100 MHz, CDCl₃): 137.29; 116.77; 109.12; 75.47; 73.78; 72.03; 66.04; 26.6; 25.19. ESI-MS: 211 ([M+Na]⁺).

1-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2-[(triethylsilyl)oxy]but-3-en-ol (=1,2-Dideoxy-5,6-O-(1-methylethylidene)-3-O-(triethylsilyl)-D-arabino-hex-1-enitol; **8**). To a cooled (−78°) soln. of **7** (1.1 g, 5.84 mmol), 1H-imidazole (0.45 g, 6.7 mmol), and DMAP (35mg, 0.29 mmol) in CH₂Cl₂/DMF 1:1 (20 ml) was added Et₃SiCl (1.03 ml, 6.4 mmol) dropwise over 5 min. The mixture was stirred for 1 h at −78°, warmed to r.t., then quenched by addition of sat. NH₄Cl soln., and diluted with AcOEt/hexane 1:1. The aq. phase was extracted with AcOEt/hexane 1:1 (3 × 10 ml), the combined extract washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 1:9): **8** (1.58 g, 90%). Colorless liquid. [α] $_{25}^{25}$ = +2.5 (c = 2.0, CHCl₃). IR (neat): 3426, 2954, 2880, 1647, 1374, 1063. ¹H-NMR (500 MHz, CDCl₃): 5.98−5.84 (m, 1 H); 5.32−5.24 (m, 1 H); 5.20−5.14 (m, 1 H); 4.39−4.36 (m, 1 H); 4.17 (t, t = 7.84, 1 H); 3.99 (t, t = 6.86, 1 H); 3.93 (t, t = 7.84, 1 H); 3.34 (t, t = 7.84, 1 H); 1.82−1.63 (br. t + 1H); 1.40 (t + 3 H); 1.34 (t + 3 H); 0.96 (t + 3 H); 0.96 (t + 3 H); 0.65 (t + 3 H). 1.3C-NMR (100 MHz, CDCl₃): 138.4; 115.7; 109.06; 75.5; 75.27; 72.68; 67.28; 26.77; 25.32; 6.72 (3 C); 4.88 (3 C). ESI-MS: 325 ([t + Na] $^+$).

1-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2-[(triethylsilyl)oxy]but-3-en-1-yl Prop-2-enoate (=1,2-Diheoxy-5,6-(1-methylethylidene)-3-O-(triethylsilyl)-D-arabino-hex-1-enitol 4-(Prop-2-enoate); 9). To a cooled (0°) soln. of 8 (1.25 g, 4.1 mmol) in CH₂Cl₂ (20 ml) was added Et₃N (0.25 ml, 6.14 mmol) followed by acryloyl chloride (0.67 ml, 8.2 mmol), and the mixture was stirred for 4 h at r.t. After completion of the reaction (TLC monitoring), H₂O (15 ml) was added and the mixture extracted with CH₂Cl₂ (3 × 15 ml).

The combined org. layer was washed with sat. NaHCO₃, soln. and brine, dried (Na₂SO₄), and concentrated and the residue purified by CC (AcOEt/hexane 8:92): **9** (1.23 g, 84%). Colorless liquid. [α]_D⁵⁵ = +30.8 (c = 2.35, CHCl₃). IR (neat): 2955, 2880, 1732, 1635, 1460, 1406, 1259, 1184, 1063. ¹H-NMR (300 MHz, CDCl₃): 6.47 – 6.41 (m, 1 H); 6.19 – 6.07 (m, 2 H); 5.87 – 5.69 (m, 2 H); 5.31 – 5.25 (m, 1 H); 5.18 – 5.13 (m, 2 H); 4.37 – 4.28 (m, 1 H); 3.99 – 3.82 (m, 2 H); 1.32 (m, 6 H) 0.94 (m, 7.93, 9 H); 0.59 (m, 7.5, 6 H). ¹³C-NMR (100 MHz, CDCl₃): 165.28; 136.89; 131.67; 128.15; 116.52; 108.46; 75.44; 73.95; 72.32; 65.47; 26.31; 25.26; 6.69 (3 C); 4.73 (3 C). ESI-MS: 379 ([m + Na]⁺).

(1S,2R)-1-[(1R)-1,2-Dihydroxyethyl]-2-hydroxybut-3-en-1-yl Prop-2-enoate (=1,2-Dideoxy-D-a-rabino-hex-1-enitol 4-(Prop-2-enoate); **10**). To a soln. of **9** (1.2 g, 3.37 mmol) in MeOH (20 ml) was added Dowex- $50 \text{ (H}^+)$ resin (100 mg), and the mixture was stirred for 6 h at r.t. After completion of the reaction (TLC monitoring), the mixture was filtered, the filtrate concentrated, and the residue purified by CC (AcOEt/hexane 7:3): **10** (0.64 g, 94%). Viscous liquid. $[a]_D^{25} = +9.7 \text{ } (c=0.65, \text{CHCl}_3)$. IR (neat): 3448, 2956, 2884, 1735, 1630, 1461. ^1H -NMR $(500 \text{ MHz}, \text{CDCl}_3)$: 6.51 (d, J=17.3, 1 H); 6.23-6.09 (m, 1 H); 6.06-5.87 (m, 2 H); 5.41 (d, J=17.1, 1 H); 5.29 (d, J=10.5, 1 H); 4.48-4.35 (m, 3 H); 4.02-3.97 (m, 1 H); 3.56-3.54 (m, 1 H); 3.32-3.06 (br. s, 1 H); 3.02-2.77 (br. s, 1 H); 2.03-1.75 (br. s, 1 H). ^{13}C -NMR $(\text{CDCl}_3, 75 \text{ MHz})$: 166.9; 137.2; 131.9; 127.7; 117.1; 73.0; 71.8; 70.7; 66.1. ESI-MS: $225 \text{ } ([M+\text{Na}]^+)$.

(1S,2R)-2-(Acetyloxy)-1-[(1R)-1-(acetyloxy)-2-(benzyloxy)ethyl]but-3-en-1-yl Prop-2-enoate (=1,2-Dideoxy-D-arabino-hex-1-enitol 3,5-Diacetetate 6-Benzoate A-(Prop-2-enoate) 11). To a cooled (0°) soln. of 10 (0.6 g, 2.9 mmol) in CH₂Cl₂ (15 ml) was added pyridine (1.43 ml, 17.4 mmol) followed by BzCl (0.36 ml, 3.04 mmol), and the mixture stirred at 0° for 3 h. Then Ac₂O (0.65 ml, 7 mmol) was added and stirred at r.t. for additional 4 h. After completion of the reaction, the mixture was diluted with H₂O (10 ml) and extracted with CH₂Cl₂ (3 × 15 ml). The combined org. layer was washed with sat. NaHCO₃ soln., H₂O, and brine, dried (Na₂SO₄), and concentrated and the residue purified by CC (AcOEt/hexane 1:9); 11 (0.98 g, 85%). Viscous liquid. [a]₀²⁵ = +25.6 (c = 0.55, CHCl₃). IR (neat):2963, 1725, 1452, 1372, 1224, 1099, 1070. ¹H-NMR (500 MHz, CDCl₃): 8.02 (dd, J = 8.3, 1.51, 2 H); 7.57 (t, J = 7.55, 1 H); 7.45 (t, J = 7.55, 2 H); 6.52 – 6.40 (m, 1 H); 6.22 – 6.09 (m, 1 H); 5.95 – 5.87 (m, 1 H); 5.84 – 5.72 (m, 1 H); 5.70 – 5.59 (m, 1 H); 5.57 – 5.48 (m, 1 H); 5.38 – 5.24 (m, 2 H); 5.16 – 5.10 (m, 1 H); 4.69 – 4.61 (m, 1 H); 4.38 – 4.27 (m, 1 H); 2.10 (s, 3 H); 2.06 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): 170.3; 169.75; 167.37; 166.47; 133.21; 132.51; 131.93; 131.52; 129.68 (2 C); 128.40 (2 C); 127.24; 119.16; 71.76; 70.69; 68.68; 62.25; 20.77 (2 C). ESI-MS: 413 ([M + Na]⁺).

(-)-Cleistenolide (=2,3-Dideoxy-D-arabino-hept-2-enoic Acid δ -Lactone 4,6-Diacetate 7-Benzoate; **1**). To a degassed soln. of **11** (100 mg, 0.25 mmol) in anh. CH₂Cl₂ (100 ml) was added *Grubbs*' second-generation catalyst (10 mg, 0.012 mmol), and the mixture was refluxed for 5 h. After completion of the reaction (TLC monitoring), the mixture was filtered, the filtrate concentrated, and the residue purified by CC (AcOEt/hexane 3:7): **1** (79 mg, 85%). Colorless solid. M.p. $132-134^{\circ}$. [a] $_{D}^{D}=-142$ (c=0.4, CHCl₃). IR (KBr): 2963, 1725, 1452, 1372, 1224, 1099, 1070. 1 H-NMR (500 MHz, CDCl₃): 8.02 (d, J=7.7, 2 H); 7.57 (t, J=7.5, 1 H); 7.45 (t, J=7.6, 2 H); 7.00 (dd, J=9.6, 6.1, 1 H); 6.29 (d, J=9.7, 1 H); 5.52 (ddd, J=9.5, 4.0, 2.3, 1 H); 5.42 (dd, J=6.0, 2.5, 1 H); 4.93 (dd, J=12.5, 2.0, 1 H); 4.80 (dd, J=9.6, 2.5, 1 H); 4.53 (dd, J=12.5, 4.4, 1 H); 2.09 (dd, MeC=O); 2.04 (dd, MeC=O). dd-NMR (75 MHz, CDCl₃): 169.9; 169.5; 166.0; 161.1; 139.7; 133.3; 129.7 (2 C); 129.6; 128.5 (2 C); 125.4; 75.5; 67.7; 62.0; 59.7; 20.7; 20.5. ESI-MS: 385 ([dd+Na] $^+$). HR-MS: 385.0992 (dd₁₈H₁₈NaO $_{d}^+$; calc. 385. 1002).

REFERENCES

- D. M. Livermore, Clin. Infect. Dis. 2003, 36, 11; A. Ohno, Infect. Control 2004, 13, 1012; R. McDaniel, M. Welch, C. R. Hutchinson, Chem. Rev. 2005, 105, 543.
- [2] E. Hunt, Drugs Future 2000, 25, 1163; C. Walsh, G. Wright, Chem. Rev. 2005, 105, 391.
- [3] B. Siedle, A. J. G. Garcia-Piñeres, R. Murillo, J. Schulte-Mönting, V. Castro, P. Rüngeler, C. A. Klaas, F. B. Da Costa, W. Kisiel, I. Merfort, J. Med. Chem. 2004, 47, 6042.
- [4] V. Nair, J. Prabhakaran, T. G. George, Tetrahedron 1997, 53, 15061.
- [5] S. Samwel, S. J. M. Mdachi, M. H. H. Nkunya, B. N. Irungu, M. J. Moshi, B. Moulton, B. S. Luisi, *Nat. Prod. Commun.* 2007, 2, 737.

- [6] M. H. H. Nkunya, Pure Appl. Chem. 2005, 77, 1943.
- [7] B. Schmidt, O. Kunz, A. Bietnat, J. Org. Chem. 2010, 75, 2389; C. Cai, J. Liu, Y. Du, R. J. Linhardt, J. Org. Chem. 2010, 75, 5754; B. V. Subba Reddy, B. Phaneendra Reddy, T. Pandurangam, J. S. Yadav, Tetrahedron Lett. 2011, 52, 2306; P. Ramesh, H. M. Meshram, Tetrahedron Lett. 2011, 52, 2443; D. Chanti Babu, J. J. P. Selavam, D. K. Reddy, V. Shekhar, Y. Venkateswarlu, Tetrahedron 2011, 67, 3815.
- [8] J. J. P. Selvam, K. Rajesh, V. Suresh, D. Chanti Babu, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2009, 20, 1115; K. Rajesh, V. Suresh, J. J. P. Selvam, C. B. Rao, Y. Venkateswarlu, *Synthesis* 2010, 1381; V. Suresh, J. J. P. Selvam, K. Rajesh, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2008, 19, 1509; D. K. Reddy, K. Rajesh, V. Shekhar, D. Chanti Babu, Y. Venkateswarlu, *Tetrahedron Lett.* 2010, 51, 5440; P. Prbhakar, S.Rajaram, D. K. Reddy, V. Shekar, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2010, 21, 216.
- [9] K. Yamauchi, F. Une, S. Tabata, M. Kinoshita, J. Chem. Soc., Perkin Trans. 1 1986, 765; D. Seebach,
 A. K. Beck, R. Imwinkelzied, S. Roggo, A. Wonnacott, Helv. Chim. Acta 1987, 70, 954; H. G. Choi,
 J. B. Son, D.-S. Park, Y. J. Ham, J.-M. Hah, T. Sim, Tetrahedron Lett. 2010, 51, 4942; G. V. M. Sharma,
 S. Mallesham, C. Chandra Mouli, Tetrahedron: Asymmetry 2009, 20, 2513.
- [10] J. S. Yadav, S. V. Mysorekar, S. M. Pawar, M. K. Gurjar, J. Carbohydr. Chem. 1990, 9, 307.
- [11] W. Wu, Y. Wu, J. Org. Chem. 1993, 58, 3586.
- [12] J. D. Hicks, C. W. Huh, A. D. Legg, W. R. Roush, Org. Lett. 2007, 9, 5621.
- [13] Y. Georges, Y. Allenbach, X. Ariza, J.-M. Campagne, J. Garcia, J. Org. Chem. 2004, 69, 7387.

Recieved February 24, 2011